Calculus AB

1-4
(Day 1)
Continuity

Definition of Continuous -
a function f is continuous at c iff

1) $F(c)$ exists
2) $\lim _{x \rightarrow C} f(x)$ exists
3) $\lim _{x \rightarrow c} F(x)=F(c)$

Without a formal definition, which of the following functions would you consider to becontinuous?

Find the limit (if it exists). If it does not exist, explain why.

$$
\text { 7) } \lim _{x \rightarrow 5^{+}} \frac{x-5}{x^{2}-25}=\frac{x-5}{(x-5)(x+5)} \frac{1}{10}
$$

Find the x values (if any) at which f is not continuous. Which of the discontinuities are removable?

49) $f(x)= \begin{cases}\tan \frac{\pi x}{4}, & |x|<1 \\ x, & |x| \geq 1\end{cases}$ continuous

Assignment:
 Pg. 78
 1-5 odd, 7-57 odd

I gave the odds, so check the answers as you go.
A helpful guide to math (calculus) homework. If you get stuck on a problem, go to the next. The more problems you attempt, the more you learn from the assignment. If you don't know how to do a whole section of problems, go to the next.

In this assignment, the problems in the 7-21 section get pretty tough, so make sure you try some from the rest, which really aren't all that bad.

